转发:福建省科学技术厅关于组织申报2024年度省科技计划项目的通知

点击阅读原文:福建省科学技术厅关于组织申报2024年度省科技计划项目的通知

各类科技计划项目申报和推荐时间如下:

序号 计划名称 项目 涉及部门 申报单位申报项目截止时间 推荐单位

推荐项目

截止时间

纸质材料受理处室及截止时间
1 产业技术开发与应用计划 区域发展项目 各设区市(不含厦门) 2024年3月13日 2024年4月12日(系统关闭) 高新、农村、社发处

2024年4月15日

2 科技型中小企业技术创新资金项目 各设区市(不含厦门) 技术创新项目2024年3月13日;

大赛获奖项目2024年3月13日

技术创新项目2024年4月12日(系统关闭);大赛获奖项目2024年4月12日(系统关闭) 省科技型中小企业

技术创新中心

技术创新项目2024年4月15日;

大赛获奖项目2024年4月15日

3 星火项目 各设区市(不含厦门) 2024年3月13日 2024年4月12日(系统关闭) 星火办

2024年4月15日

4 省级科技特派员后补助项目 省直单位、各设区市(不含厦门) 2024年3月13日 2024年4月12日(系统关闭) 星火办

2024年4月15日

5 对外合作项目 省直单位、各设区市(不含厦门) 2024年3月13日 2024年4月12日(系统关闭) 合作处

2024年4月15日

6 引导性项目 省直单位,(福州和厦门项目资助经费由设区市筹集) 2024年3月13日 2024年4月12日(系统关闭) 高新、农村、社发处

2024年4月15日

7 支持设区市农科院所建设专项项目 各设区市农科院所(不含厦门) 2024年3月13日 2024年4月12日(系统关闭) 农村处

2024年4月15日

8 创新药物研发奖补助项目 各设区市(不含厦门) 2024年3月13日 2024年4月12日(系统关闭) 社发处

2024年4月15日

9 基础研究与高校产学合作计划 自然科学基金项目 省直单位、各设区市(厦门项目资助经费由厦门市筹集) 2024年3月13日 2024年4月12日(系统关闭) 基础处

2024年4月15日

10 高校产学合作项目 有关高校 2024年3月13日 2024年4月12日(系统关闭) 高新、农村、社发处

2024年4月15日

11 创新战略研究项目 省直单位、各设区市(不含厦门) 2024年3月13日 2024年4月12日(系统关闭) 规划政策处

2024年4月15日

12 科技创新平台建设计划 引进重大研发机构资助项目 省直单位、各设区市(不含厦门) 2024年3月13日 2024年4月12日(系统关闭) 合作处

2024年4月15日

13 科技企业孵化器/众创空间新增孵化用房补助及科技创新平台认定资助项目 新增孵化用房补助:经过省级认定的科技企业孵化器和众创空间;

科技创新平台认定资助:2023年度新认定的国家级和2022年度、2023年度新认定的省级科技企业孵化器

2024年3月13日 2024年4月12日(系统关闭) 创新办、省高新技术创业服务中心

2024年4月15日

14 星创天地建设后补助项目 省直单位、各设区市(不含厦门) 2024年3月13日 2024年4月12日(系统关闭) 星火办

2024年4月15日

15 省级新型研发机构非财政资金购买科研仪器设备软件后补助项目 经评估命名的省级新型研发机构 2024年3月13日 2024年4月12日(系统关闭) 规划政策处

2024年4月15日

16 技术转移计划 重大科技成果购买补助项目 省直单位、各设区市(不含厦门) 2024年3月13日 2024年4月12日(系统关闭) 成果处

2024年4月15日

17 福建省中科院STS计划配套项目 省直单位、各设区市 2024年3月13日 2024年4月12日(系统关闭) 成果处

2024年4月15日

18 公益类计划 省属公益类科研院所基本科研专项 省属公益类科研院所 2024年3月13日 2024年4月12日(系统关闭) 规划政策处

2024年4月15日

热管理材料之一 石墨烯

来源 | 2D Materials | Graphene related materials for thermal management

 

摘要:自从发现石墨烯是单原子层以来,已经过去了近15年。期间已有许多论文发表证明其高电子迁移率,优异的热、机械和光学性质。最近看到石墨烯在商业产品中的应用越来越多。本文综述了石墨烯和其他二维基材料的热性能研究现状,包括制备和表征技术及其在电子和功率模块中的应用。从本文中可以明显看出,石墨烯已经渗透市场,并在商业电子热管理领域得到越来越多的应用。在本文中,还对制造工艺的成熟度进行了分析,各种表征技术的准确性和挑战是什么?在我们看到这个令人兴奋和迷人的领域的进一步应用之前,还有哪些问题和问题?

关键词:石墨烯、二维材料、热管理、材料制备、热表征

00引言

热管理和散热是许多大型电力和热交换系统中普遍存在的问题。至少在电子系统中已经观察到密集的热流密度。电子行业的核心,即半导体行业自1965年以来一直遵循摩尔定律。在过去的几十年里,芯片制造商一直在增加缩小尺寸的晶体管数量,对高性能的追求极大地增加了集成电路的功耗,这给电子系统的散热带来了巨大的挑战。近年来,由于量子效应的物理限制,摩尔定律已经放缓,预计很快就会碰壁。而不是进一步小型化的晶体管,多核设计已被提出和应用,以继续适应高性能的发展。这将在一定程度上缓解热管理方面的压力,但芯片内部不均匀局部过热的问题仍未解决。例如,在绝缘栅双极晶体管(IGBT)中,局部热点的热流已超过1000 W/cm2,这对组件的可靠性构成了很大的威胁,并将大大缩短其使用寿命。

二维材料是一组具有几个原子厚度的层状结构的材料。最具代表性的二维材料是石墨烯,Novoselov等人首次使用Scotch tape对其进行机械剥离。石墨烯由碳原子以六边形晶格键合而成,具有独特的结构、电学、热学、力学和化学性能,因此已成为学术界和工业界各种应用的热门研究领域之一。例如,理论预测石墨烯的电子迁移率为3 × 107 cm2/VS,实验报道了化学气相沉积(CVD)生长的石墨烯的电子迁移率为350000cm2/VS,可以满足高端电子器件的要求。石墨烯极其坚固而又灵活的特性也为许多苛刻的应用带来了希望,如运动器材,柔性电池,太阳能电池等。随着石墨烯的兴起,其他二维材料在电子领域的潜在应用也引起了人们的极大兴趣。

在石墨烯和相关二维材料的独特特性中,它们的高导热性显示出解决电子系统热管理挑战的巨大潜力。以石墨烯为例,Balandin等人使用光热拉曼技术对悬浮石墨烯进行了首次测量(如图1所示),结果显示,在室温(RT)下,悬浮石墨的导热系数值大大超过了本体石墨的~2000 W/(mK)。独立的随访测量证实了这一结论。Ruoff等人利用光热方法在真空和气体环境中测量了不同尺寸的悬浮单层石墨烯,他们发现在350K附近,其导热系数范围为(2.6±0.9)至(3.1±1.0)× 103 W/(mK)。Yoon等人使用改进信噪比的热显微镜测量无残基石墨烯的导热系数,得到悬浮石墨烯桥在335-366K下的导热系数范围为2430±190至2100±160 W/(mK)。石墨烯有趣的热性质可以用二维晶格中长波长声子输运的特性来解释。石墨烯中的长波声子具有异常长的平均自由程,即使热输运是扩散的,也受样品尺寸的限制。后者可以通过注意到三声子Umklapp散射不足以恢复二维晶格中的热平衡来解释,而不像在三维晶格中。这种效应的一个含义是,少量层石墨烯的热导率与样品中原子面数的异常依赖

图1.第一次使用拉曼光热方法测量石墨烯的热导率。

 

石墨烯优异的热性能及其柔韧性激发了对其衍生物的广泛研究,包括氧化石墨烯、石墨烯薄膜、石墨烯纤维、石墨烯泡沫、石墨烯层压板、石墨烯热界面材料(TIMs)等,用于热管理应用。以石墨烯及其衍生物作为填料的各种复合材料已经被开发出来。液相剥离(LPE)石墨烯和少层石墨烯薄片的混合物在导热胶和导热相变材料中作为填料表现优异。石墨烯由于其与基体材料良好的热耦合性和较低的成本,是热复合材料中比碳纳米管(CNTs)更好的填料。由悬浮液中剥离的石墨烯薄片制备的米级石墨烯薄膜具有优异的热性能,并显示出作为导热材料的巨大潜力。

另一种很有希望用于热管理的二维材料是氮化硼(BN),它的晶格与石墨烯相似,但硼和氮化硼原子交替排列在六边形结构(hBN)中。理论上,hBN具有高达1700-2000 W/(mK)的高导热系数,因此它被用于开发TIMs和散热器。更重要的是,hBN是一种电绝缘材料,这使得它成为石墨烯及其衍生物在不允许导电的情况下的重要战略和非常好的补充。

在本文中,我们将回顾使用石墨烯基材料以及其他二维材料(如hBN)进行热管理的最新进展。首先简要介绍传热的基本机理。之后,将详细回顾和总结用于热管理应用的各种石墨烯基材料,包括其衍生物和相关的二维材料。对热管理材料性能的理论分析进行比较和总结,以了解二维材料系统中的声子和热输运。此外,还将介绍用于这些材料的不同热表征方法,并对其优点和局限性以及准确性进行总结和评论。在本综述的最后,将讨论和评论使用石墨烯和其他二维材料进行热管理的挑战和机遇。

01热传输基本理论

热传导是通过物质中微观粒子的碰撞和热载体的运动来实现的。在材料中,热传导受傅里叶定律支配,如下所示:

其中q为局部热流密度,单位为W/m2;k为材料导热系数,单位为W/(mK);∇T为局部温度梯度,单位为K/m。傅里叶定律描述了热量在材料中从高温区域传导到低温区域的效率。然而,在电子产品的热管理中,热量必须通过不同的材料通过接触界面传导,热阻通常用于评估热传递的效率,因为它是附加的,便于测量。热阻计算公式为:

∆T为两个表面之间的温差(K), Q为两个表面之间传导的热能(W)。总热阻R由材料沿热传导路径的热阻和两种不同材料界面处的接触电阻组成,前者取决于材料的导热性和厚度,后者取决于粘合压力、表面粗糙度、表面清洁度等诸多因素。为了改善从电子系统到环境的散热,需要材料的高导热性、小材料厚度和材料界面的有效相互作用。与在特定应用中可以设计的材料厚度和界面条件不同,导热性是依赖于电子和声子输运的材料的固有特性。在自由电子有限的二维材料中,热传导主要由声子控制。我们还注意到,由于二维材料的原子结构各向异性,其导热性在不同方向上变化很大。在x-y平面上,原子通过共价键相互作用,因此面内热导率很高,而在z方向上,范德华力(非常弱)支配着层间相互作用,因此二维材料的面内热导率通常很低。

02材料的发展

2.1 石墨烯基散热器

在电子系统的热管理中,散热器起着关键作用。它使热交换组件的表面积比原始表面大得多,因此大大促进了电子系统的散热和冷却效果。传统的散热器通常由铝和铜等相当重的金属制成。石墨烯的二维结构和巨大的表面体积比使其及其相关的二维材料成为理想的散热材料。

2.1.1 基于单层和多层石墨烯的散热器

据文献报道,脱落和悬浮石墨烯的面内导热系数高达2000-5300 W/(mK)。该数值与碳纳米管相当,也高于石墨和金刚石所报道的数值。Balandin等人展示了第一个基于石墨烯的散热片,该散热片使用从高取向热解石墨(HOPG)中机械剥离的几层石墨烯。石墨烯-石墨层首先被剥离,然后转移到SiC衬底上,以冷却高功率GaN晶体管,如图2所示。结果表明,当晶体管工作在~13 W/mm时,热点温度可降低~20°C,热密度约为250 W/cm2。这表明石墨烯增强结构作为热点可以将器件的寿命延长一个数量级。

图2.石墨烯用作AlGaN/GaN场效应管的散热片。

        模拟结果表明石墨烯散热器的效率取决于器件的结构和几何形状。Gao等人使用CVD方法生长单层和多层石墨烯作为散热器。研究发现,在硅片上热流密度为430 W/cm2的热点,单层石墨烯作为散热片可将热点冷却~13℃(从121℃降至108℃),而多层石墨烯只能将热点冷却~8℃。这是由于在镍箔上生长的石墨烯比在铜箔上生长的石墨烯晶粒尺寸小,这导致了更多的晶界,从而降低了石墨烯材料的热性能。Bae等人使用Ni表面生长的多层石墨烯作为柔性衬底上的散热片。结果表明,石墨烯基导热片比金基导热片在衬底上的温度分布更加均匀。Shih等人使用CVD法生长的单层石墨烯来冷却光子晶体(PhC)腔。实验结果表明,在100 μ W的光功率下,石墨烯散热片可以将PhC腔降低45K。Lee等人还将CVD石墨烯应用于冷却GaAs/InGaAs/InGaP集电极上异质结双极晶体管,观察到热阻降低30%。

表1.GFs材料制备工艺与热性能的比较。

与机械剥离石墨烯相比,CVD法生长石墨烯的方法越来越成熟,因此CVD石墨烯散热器表现出更好的工艺可扩展性和兼容性。另一方面,用CVD方法合成的石墨烯在其晶体结构中含有更多的缺陷和晶界(即畴尺寸小得多),因此与机械剥离的石墨烯相比,其导热性更低。Lee等人报道,当平均晶粒尺寸分别为4.1、2.2和0.5µm时,悬浮CVD石墨烯的导热系数分别约为2660、1890和680W/(mK) ,显示出热导率与石墨烯晶粒尺寸有明显的相关性。此外,拟合数据显示,悬浮单晶石墨烯的导热系数约为5500 W/(mK),非常接近机械剥离的石墨烯。

近年来材料合成的进展正在解决CVD生长石墨烯晶体缺陷的局限性。近年来化学气相沉积石墨烯的研究取得了很大的进展,有报道称已经制备出了大晶粒至晶圆级的单晶石墨烯。如Lee等人在Ge衬底上成功生长出无褶皱的单晶单层石墨烯,如图3所示。由于石墨烯与其下的Ge表面之间的相互作用非常弱,实现了石墨烯的无蚀刻干转移,这使得循环利用Ge衬底来持续生长石墨烯成为可能。这种方法需要复杂的衬底制备,例如,单晶Ge衬底必须在硅衬底上外延生长,然后才能生长石墨烯。最近,大单晶石墨烯的快速生长得到了报道。

图3.在锗表面生长的单晶单层石墨烯。

 

例如,Wu等在CuNi合金衬底上实现了英寸大小的单晶石墨烯的快速生长,在单个成核位点局部引入碳前驱体,2.5h即可生长出1.5英寸大小的石墨烯单层。Lin等人也报道了具有增强光学、电学和热学性能的超清洁石墨烯的生长。CVD技术的进步推动了石墨烯散热器的实际应用。然而,CVD石墨烯在工业规模上的处理、工艺兼容性以及单层和少层石墨烯所能传导的总热能有限等挑战仍然是CVD石墨烯在工业上作为散热器应用之前需要克服的障碍。

2.1.2 石墨烯薄膜散热器

虽然悬浮石墨烯在室温下的热导率非常高,但当石墨烯与衬底接触时,其面内热导率显著降低。例如,由于声子耦合和散射,在RT下,非晶二氧化硅(SiO2)上负载的单层石墨烯(SLG)的面内导热系数为~600 W/(mK)。由于上述局限性,石墨烯薄膜(GFs)由化学或热剥离的石墨烯片组装而成,成为一种新的散热材料。

许多不同的装配工艺已经开发出来,如真空过滤,静电纺丝,湿纺法,浸涂,喷墨印刷和旋涂层。石墨烯或氧化石墨烯(GO)薄片的组装机制是基于薄片之间不同的物理和化学相互作用,如范德华力和氢键。在薄片组装过程中,单个颗粒可以自发或被动地排列,形成定向良好的层结构。例如,氧化石墨烯悬浮液的蒸发使氧化石墨烯在气液界面由随机变为液晶,为形成薄膜结构提供了动力。根据不同的制造方法,已报道的GFs热性能差异很大。从表1可以看出,大多数制备的石墨烯的面内导热系数值都在1500 W/(mK)以下,远低于工业热解石墨片(PGS)的面内导热系数值,其最高值为1950 W/(mK)。

GF的导热性差与原子和微观结构缺陷密切相关。先前的研究表明,石墨烯中的热传导本质上是由sp2键合六方碳晶格内的声子输运控制的。分子动力学(MD)模拟表明,当氧含量为5%时,石墨烯的导热性可降低90%。因此,高结晶度和大晶粒尺寸的石墨烯对于实现沿平面方向具有出色导热性的GFs至关重要。为了优化石墨烯的结晶度,已经报道了不同的方法,包括化学和热还原来去除材料中的氧气,用不同的化学还原剂处理GFs。在1300℃的炭化温度和2200℃的石墨化温度下的热退火也有还原的报道。GFs的质量因还原过程的不同而有很大差异。人们普遍认为,2000°C以上的高温退火可以使石墨烯材料的缺陷愈合并提高结晶度。通过控制石墨化温度和压力,可以获得与PGS相似的导热系数。尽管高温退火有许多优点,但在GF退火过程中也存在一些需要解决的问题。例如,氧基团的分解导致CO2或CO气体的形成,这可以增加层距,甚至形成气穴(如图4所示),从而降低石墨烯薄片在薄膜中的排列。

图4.GFs的制备工艺。

 

目前,高温退火GFs与PGS相比优势并不明显。为了进一步提高GFs的导热性,结构优化变得非常重要,例如改善晶粒尺寸,实现良好的取向,制造大而光滑的结构以及降低层间结合能。最近的一项研究得出结论,晶粒尺寸从~200nm增加到~10µm会导致导热系数从~610增加到~5230W/(mK)。大的晶粒尺寸极大地有利于低频弹道声子在晶粒内部的传递以及它们在晶界上的良好透射率,从而导致GF具有超高的面内导热系数。GFs的热导率也取决于石墨烯层在通平面方向的晶格结构。石墨烯层间声子界面散射是提高石墨烯导热性能的主要障碍。已有研究表明,将石墨的排列顺序从AB-Bernal堆叠石墨烯改变为涡层堆叠石墨烯,会导致层间结合能明显降低,从而显著降低声子界面散射,有利于面内方向的传热。最近的一项研究证实了这一理论,并表明在37%的涡轮层积石墨烯的存在下,GFs的导热系数显著提高到3200W/(mK)。

此外,与PGS的制造相比,GFs的组装方法为膜结构的设计提供了更大的灵活性。例如,商用PGS的厚度限制在10-100 μm,这给客户的选择更少。对于GFs,可以很容易地实现从几百纳米到毫米的不同厚度,这可以满足从微电子到军事和空间探索等不同应用的各种要求。此外,随着薄膜厚度的增加,商用PGS的密度逐渐降低。先前关于聚酰亚胺(PI)热解过程的研究也报道,在厚PGS(大于25µm)的情况下,由于曲率和层错配的增加,石墨层织构的取向变得更差。因此,当膜密度达到2.1g/cm3时,工业上制造的PGS厚度通常限制在25µm以内,以获得取向良好的石墨层织构。与PGS不同的是,GFs是由单个氧化石墨烯薄片预组装而成的,并且在水平方向上具有更好的取向。因此,厚度的增加不会导致GFs中层错配的增加。当石墨烯厚度大于25µm时,石墨烯取向良好的石墨烯层结构和高密度使得石墨烯的导热系数大大高于PGS。

是否可以进一步提高石墨烯薄膜的导热系数,使其达到更高的值是仍然需要解决的科学问题。理论研究表明,在完美且无缺陷的结构下,石墨烯的导热系数可以接近10000W/(mK)。通过控制涡层状态、无缺陷、无皱纹、排列良好的结构以及大晶粒尺寸目前是推动石墨烯薄膜导热性优化的正确策略。

2.1.2 LPE石墨烯薄膜散热器

液相剥离(LPE)是对胶带辅助机械剥离、CVD和升华方法的一种非常重要的补充

悬浮形式的石墨烯。该方法从石墨颗粒开始,允许以低成本大规模生产石墨烯。因此,它具有许多应用前景,包括涂料,复合材料,油墨,纤维,散热材料等。LPE工艺有两种类型,一种是纯机械剥离,在液体中使用剪切力或名义力,例如通过超声,克服石墨中的范德华力,直接产生原始的石墨烯薄片。另一种方法涉及剥离过程中的化学反应,即石墨颗粒首先膨胀和氧化,然后剥离以产生氧化石墨烯悬浮液,该悬浮液随后可被还原生成所谓的还原氧化石墨烯(rGO)。目前报道的大多数LPE工艺都源于 Hummers 方法,并进行了修改,如使用不同的氧化剂和温度,使生产过程更安全,更环保。与纯液体机械剥落法相比,还原氧化石墨烯片制备石墨烯具有横向尺寸大、分散性好、工业化生产规模大等优点,但石墨烯晶格缺陷较多,石墨烯材料杂质较多。

基于LPE石墨烯的散热器已经被证明可以冷却高达1750 W/cm2的热点。Zhang等人采用真空过滤和滴涂两种方法从纯机械LPE石墨烯悬浮液中制备石墨烯薄膜作为散热片。测量结果表明,由于石墨烯晶体的缺陷和石墨烯薄片之间巨大的接触电阻,液滴涂覆石墨烯薄膜的平面内导热系数约为110 W/(mK),远低于胶带剥落石墨烯薄膜。使用真空过滤石墨烯散热器和液滴涂覆石墨烯散热器在热点处分别检测到温度下降6°C和4°C。有限元模拟结果表明,石墨烯薄片在散热片内的排列方向和石墨烯与芯片表面的热边界阻是决定散热片性能的关键参数。

Han等人使用嵌入氧化石墨烯模式也观察到GaN发光二极管(led)的散热性能得到改善。首先将氧化石墨烯分散体涂覆在蓝宝石衬底上,然后在1100℃下用氢气热还原。然后用光刻法对氧化石墨烯进行图像化,并通过外延生长在其上生长GaN层。在这一步之后,LED结构被制造出来,因此图案化的氧化石墨烯被嵌入到下面。实验结果表明,rGO嵌入式LED的芯片表面峰值温度比常规LED低约5℃,如图5所示。

图5.芯片表面红外图像。

        LPE石墨烯散热器的热性能取决于几个因素。首先,分散剂和其他成分的存在往往会降低薄膜的性能。其次,单个石墨烯片在薄膜中的排列对薄膜的性能起着重要的决定作用。研究表明,通过过滤,高度排列的石墨烯薄膜表现出很强的各向异性热导率,即面内导热系数为120W/(mK),而面外导热系数为0.5-2W/(mK)。最后但并非最不重要的因素是石墨烯薄片的横向尺寸。研究表明,导热系数随薄片尺寸的增大而线性增加,表明热传导主要受薄片边界的限制。因此,只要氧化石墨烯薄片转化为高质量的石墨烯,就有可能从氧化石墨烯悬浮液中制备高性能的石墨烯薄膜作为导热材料。已有多次报道,通过1700℃至3000℃的超高温退火,可以实现氧化石墨烯的完全还原和石墨烯晶格恢复。先前的一项研究报告称,溶液处理的氧化石墨烯薄膜经过2850℃退火和机械压制后,导热系数达到1400 W/(mK),这显示了散热应用的巨大潜力。

2.2 石墨烯基导热复合材料

石墨烯独特的导热性能激发了石墨烯和FLG在TIM、热复合材料和涂层中的实验研究。对石墨烯复合材料的初步研究发现,即使少量的随机石墨烯填料也能提高环氧复合材料的导热性。石墨烯热复合材料导热系数的巨大差异源于制备方法、基体材料、石墨烯质量、石墨烯填料横向尺寸和厚度等因素的差异。早期对石墨烯填料热复合材料的研究大多局限于填料的低负荷组分,f < 10vol%。最近,由于技术的发展和成本的大幅降低,石墨烯的大负荷复合材料出现了,情况发生了变化(见图6)。

图6.光学图像和微观形貌。

从基础科学和实际应用的角度来看,具有高负载分数的石墨烯或FLG填料的复合材料的热性能非常有趣。高负荷导致了复合材料高的热渗流。与电渗流相比,热渗流是一种鲜为人知的现象。电渗流用标度律σ ~ (f−fE) t来描述,其中σ为复合材料的电导率,f为填料加载体积分数,fE为填料在电渗流阈值处的加载分数,t为临界指数。与电导率不同,在大多数情况下,复合材料的导热性不会随着加载分数的增加而显示出明显的变化。利用填料优化控制石墨烯复合材料中的电和热渗透,并可能将石墨烯与其他电绝缘二维填料(如六方氮化硼(h-BN))结合,仍然是石墨烯热复合材料进一步发展的重要挑战。

研究具有高石墨烯负载的复合材料具有很强的实际动机,例如用于电子器件散热的更好的TIMs。市面上体积导热系数低于5W/(mK)的TIMs已不能满足行业要求。具有高石墨烯负载的复合材料具有提供高导热性的潜力。最近的技术发展表明,LPE石墨烯可以大量低成本生产。氧化石墨烯(GO)的还原方法已经取得了重大进展。这些发展使得石墨烯填料甚至适用于具有高负载分数的复合材料。最近的一项研究报道了石墨烯和h-BN的高负载(高达f = 45vol.%)复合材料的热性能。为了确定二维填充材料复合材料导热性能的总体趋势,我们将电绝缘h-BN与石墨烯进行了比较(见图7)。研究发现,石墨烯复合材料中的热渗流发生在比电渗流更高的负载下。石墨烯环氧复合材料的导热系数超过~12.5 W/(mK),高于市售的TIMs。

图7.热导率增强与填充负载率的关系。

此外,石墨烯复合材料作为散热材料也显示出巨大的潜力。传统的散热器是由铜或铝等金属制成的,带有翅片以增加其表面积。然而,碳基散热器因其重量轻、各向异性和高导热性而受到人们的广泛关注。石墨作为散热器材料的历史由来已久。2003年,Norley等人提出制造各向同性可控的石墨基散热器。在他们的设计中,平整且定向良好的石墨片被粘合在一起制备成石墨基散热器。结果表明,该石墨散热器在水平方向上的导热系数高于垂直方向。Getz等人基于类似的概念制作了由不同尺寸的石墨片制成的散热器。近年来,人们对石墨烯及其复合材料的散热性能进行了研究。Wu等人利用Cu纳米颗粒包覆石墨烯片,在50℃下制备了导热系数高达1912 W/(mK)的复合薄膜。模拟结果表明,石墨烯/Cu复合薄膜比Cu和石墨烯薄膜具有更高效的热传递能力。Wai等人开发了一种简便的机械解理方法来合成石墨烯纳米片和石墨烯纳米片/Cu (GN/Cu)复合薄膜。由这种GN/Cu复合薄膜制成的散热器的导热系数高达2142 W/(mK),与石墨烯片散热器相比增加了26%。Lu等人在铝散热器上涂覆了1900nm的石墨烯片,在1.8 W/cm的热通量下,与未涂覆的散热器相比,温度降低了7°C。石墨烯/石墨基散热器能够控制不同方向的导热系数,这为优先传热提供了可能。

2.3 石墨烯纤维

与石墨烯薄膜类似,石墨烯纤维是由还原氧化石墨烯片的互锁层组成的宏观组装结构。到目前为止,人们主要研究它们的机械和电气性能,用于取代碳纤维和在智能纺织品中的应用。然而,它们在热应用中也有很大的应用前景。氧化石墨烯(GO)纤维可以通过将液晶氧化石墨烯分散体放入混凝剂中通过湿纺来制备。然后将组装好的氧化石墨烯纤维还原成石墨烯纤维,并可能进行退火。该工艺在氧化石墨烯分散、混凝液体、纺丝设置、还原过程和退火过程中都有过多的参数,这使得石墨烯纤维性能具有非常高的可变性,并且有可能进一步优化性能。湿纺丝制造路线具有高度可扩展性,每个喷嘴的纺丝速度可能达到每小时数公里,这为大规模应用于聚合物基质中的填料或柔性电子或纺织品中的独立结构提供了可能性。针对这些应用,Li等人展示了一种由熔融石墨烯纤维制成的柔性多孔无纺布,其面内导热系数为301.5 W/(mK),密度为0.22 g/cm3,如图8所示。

图8.制备的氧化石墨烯纤维织物(GOFFs)和石墨烯纤维织物(GFFs)的湿熔组装机理和形态。

2.4 石墨烯复合材料

石墨烯层叠板已被证明用于表面保护、海水淡化、气体不渗透屏障和电磁干扰屏蔽。但是石墨烯层压板在热涂层中的应用越来越受欢迎。通常,在石墨烯层压板中,石墨烯沉积在各种衬底上,包括聚合物(聚对苯二甲酸乙二醇酯(PET))和金属(铜,铝)。在石墨烯层压板中,石墨烯片通过粘合剂或范德华力结合在一起。到目前为止,已经开发了几种简单的石墨烯层压板制造技术,包括CVD、滴铸、旋涂、喷涂和浸涂。通过涂覆石墨烯来制造层压板结构,塑料衬底的导热系数提高了600倍,铜薄膜的导热系数提高了24%(图9)。

图9.石墨烯层压板。

2.5 石墨烯复合材料

2.5.1 石墨烯泡沫

石墨烯泡沫由石墨烯组装成多孔的宏观泡沫状结构。泡沫的多孔性使得石墨烯泡沫的有效导热系数非常低,在固体浓度约为0.45 vol%时,其导热系数为0.26至1.7 W/(mK)。尽管如此,石墨烯泡沫表现出接近金属泡沫的导热性,其孔隙度更高一个数量级。此外,石墨烯泡沫具有非常高的可压缩性,使其对TIM应用具有吸引力。石墨烯泡沫主要通过石墨烯CVD在Ni泡沫上合成,随后蚀刻Ni模板,留下独立的石墨烯结构。通过冷冻铸造或水热还原氧化石墨烯悬浮液也可以形成类似的结构。作为独立结构,石墨烯泡沫和石墨烯/碳纳米管气凝胶已被证明可用于TIM应用,压缩石墨烯泡沫的导热系数约为88 W/(mK)(图12),并且在非常低的压力下具有低热界面阻力[179]。使用h-BN也证明了类似的结构,压缩h-BN泡沫的平面导热系数高达62 W/(mK)。石墨烯和h-BN泡沫都可以渗透形成聚合物复合材料。等人创建了垂直排列的石墨烯泡沫环氧复合材料,在石墨烯负载分数为19 vol%时,其通平面导热系数为35.5 W/(mK),显著高于随机分散的石墨烯增强复合材料。最近,Zhamu等人通过无化学物质的方法合成了一种高弹性和弹性的石墨烯泡沫。这种石墨烯-碳混合泡沫显示出作为散热器的超级有效的潜在应用

图9.石墨烯泡沫。

2.5.2 定向排列的石墨烯片

石墨烯片具有优异的面内导热性,但由于其低的通面导热性,通常局限于热扩散应用。一种潜在的解决方案是将多个石墨烯片堆叠成块状材料,可用于TIM和其他热应用。Liang等人引入了这一概念,创造了一种通平面导热系数为112 W/(mK)的材料。将石墨烯薄膜与焊料或聚合物堆叠并粘合在一起,然后垂直于导热轴切割成薄片,适用于TIM。Zhang等人和Wang等人进一步改进和优化了这一概念,导热系数分别为615 W/(mK)和1379 W/(mK)。与传统TIM相比具有优异的导热系数,其导电性甚至高于散热器材料,从而消除了具有厚粘合线的TIM的缺点。相反,TIM和连接表面之间的热接触热阻是限制因素,而不是热导率。事实上,正如Wang等人所看到的,整体性能主要取决于触点,通过与薄铟层的结合,其性能可以与薄焊点相媲美,同时保持良好的柔韧性和厚度,这对于填补间隙的应用至关重要。

03未来的潜在应用

到目前为止,已经有一些应用证明使用石墨烯和相关的二维材料在商业产品上进行热管理。例如,石墨烯被用于涂覆LED灯丝,据称石墨烯可以促进LED灯泡的散热,从而延长LED的使用寿命并提高效率。基于石墨烯的散热器可以提供不同的厚度,从20µm到100µm,导热系数高达3200 W/(mK)。此外,垂直排列的石墨烯基TIM可在Z方向上提供高达1000 W/(mK)的导热系数。此外,据称可以提供导热系数>10 W/(mK)的石墨烯基导热脂。石墨烯薄膜的真正商业应用似乎是在Mate 20手机上。石墨烯组装膜可以有效地降低感知温度。为了进一步降低温度,需要大幅度提高石墨烯薄膜的质量。

04结论

组分优化和微观结构改造是提高复合材料力学和保温性能、促进复合材料功能化和产业化的最有效和最具说服力的策略。高质量二维材料的大规模生产一直被认为是其工业应用的主要障碍。由于对石墨烯和相关二维材料的强烈兴趣,在过去的几年里,二维材料的生产取得了很大的进展。利用CVD法制备大面积连续石墨烯,研制了卷对卷系统。LPE方法使得大量生产石墨烯和其他二维材料的成本低廉,这使得石墨烯和相关二维材料作为复合材料的填料,以及石墨烯和BN薄膜作为散热器成为现实。这些使能技术为二维材料在工业中的热管理应用铺平了道路。本文对石墨烯和其他二维材料从科学到工程再到最终应用的各个方面的现状进行了批判性的分析和总结。希望它能引发进一步的科学研究,并在这一领域开发更多的商业应用。

「导热散热展」翻译

航空:石墨烯如何应对该行业的挑战?

面对全球变暖,航空业面临着真正的环境危机,必须在2050年实现碳中和的目标,这对整个行业来说是一个巨大的挑战。

凭借其多种特性,石墨烯满足了解决航空领域问题的所有要求:通过减轻结构重量来实现脱碳,还具有其他性能,例如由于其导电性而具有防雷作用,由于其热特性而具有除霜作用甚至凭借其防腐蚀特性来保护设备。

重点关注航空领域脱碳的紧迫性以及石墨烯在更轻、更高效飞机上的应用。

航空脱碳:重大挑战
该飞机呈现出速度和飞行距离的独特组合。

然而,航空运输造成了全球约 3% 的 CO2排放量和近 6% 的全球变暖。

面对减少温室气体排放的迫切需要,国际民航组织( ICAO)190个成员国于2022年底采取措施,以期实现到2050年碳中和的目标。

为了实现这一目标,需要考虑几个点:

  • 使用可持续或替代燃料:农业燃料、氢气等。
  • 电力推进装置的发展
  • 使用新材料减轻设备重量并减少煤油消耗

关于“绿色”飞机的实施,即使用可持续燃料的电动或功能性飞机,该解决方案尚未完全可利用。一方面是因为开发仍在进行中,另一方面是因为相关成本仍然非常高(一吨 SAF(可持续航空燃料)的价格大约是一吨煤油的五倍)。

关于电动飞机,这里的主题也还没有相关性,因为开发需要大量时间,目前,与电池相关的飞机的超重不允许在 100 年内进行中长途飞行% 电力(来源:赛峰)。

然后,仍然需要实施更快、更便宜的解决方案:用先进、更高效和轻质的材料(例如石墨烯)取代传统材料。

石墨烯支持航空业脱碳

在轻量化方面,石墨烯可以减轻飞机的整体重量,从而大幅降低燃油消耗。Elmar Bonnacursot(石墨烯旗舰航空冠军)表示:“每减少一公斤,就可以节省 2 吨煤油,或者在飞机的整个使用寿命期间避免减少 6 吨 CO2。”

据石墨烯委员会称,石墨烯可使设备重量减轻 20-30%,而不会影响其他预期性能。此外,石墨烯已被证明可以使碳纤维增强塑料 (CFRP) 更轻、更强,同时提供更好的抗冲击性,抗冲击性提高约 60%。因此石墨烯是具有最佳质量/机械性能比的材料。

通过内部以及与多个合作伙伴和客户进行的测试,Carbon Waters 在航空领域广泛使用的聚合物上证明了这种潜力。这些结果使得我们能够通过Graph’Up Resist 和 Graph’Up Force系列提供改善复合材料热机械性能并应对减轻材料重量挑战的产品。

石墨烯为航空业带来多种优势

石墨烯在航空领域还有哪些其他优势?
除了石墨烯所允许的轻质性和机械增强性之外,它还具有其他优点,例如优异的导热性和导电性,可用于导电涂料等功能化涂料或改善传热流体的性能。石墨烯的多功能性使其成为解决航空领域各种问题的理想材料。

石墨烯作为防腐性能增强剂

此外,石墨烯是一种优异的防腐剂,可以延长涂层的使用寿命。Graph’Up Oxi系列专为此目的而设计。由于其阻隔性能,Graph’Up Oxi 添加剂可保护飞机的所有部件免受腐蚀,包括化学来源的部件(煤油、除冰剂等)。

单独使用时,它们可以在含有锌添加剂的配方中协同使用,最大限度地提高防腐性能。因此,涂层可以涂成更薄的层,进一步增加飞机的轻便性。

石墨烯作为集成除霜解决方案

通过焦耳效应,石墨烯提供了一种热电解决方案,可以防止或消除霜的出现,而不影响空气动力学特性。该领域已被多个参与者广泛研究,其中包括通过其先锋项目 (GICE)进行的石墨烯旗舰项目。该项目由空中客车公司和索纳卡公司牵头,即将完成,旨在将富含石墨烯的除冰系统提升至技术准备级别 6(TRL6)。

此类系统将可以避免在停机坪上使用乙二醇等化学除冰剂,这些化学除冰剂会导致飞机长时间固定在地面上。此外,用另一种除冰方法代替传统上使用的除冰器将避免化学物质释放到空气中,从而避免被附近的人(人员、旅行者、周围人群等)吸入。

石墨烯作为防雷保护器

目前,含有铜网的复合材料主要用于航空领域,以保护飞机免受雷击。这是一个有效的解决方案,但仍然存在一些缺点。首先,这些复合材料导致飞机总重量增加。其次,它们实施起来复杂且耗时,该过程难以自动化。

石墨烯是一种轻质材料,还具有优异的导电性,可以重新分配撞击点接收到的能量。这使其成为防雷系统的一个有趣的解决方案。通过用导电树脂(特别是石墨烯)取代复合材料中的铜网,飞机因此配备了更易于实施的防雷解决方案。

由于其多种特性,石墨烯有助于支持航空业实现碳中和的目标,同时提供该行业寻求的许多其他性能。除了本文详细介绍的应用之外,石墨烯还可以提高材料的防火性能,同时提供出色的导热性甚至 EMI屏蔽。

 

盘点:2023年Nature/Science上的石墨烯研究成果

1.Nature:增强双层石墨烯的超导性

2023年1月11日,Nature 报道了研究人员在双层石墨烯BLG上制备单层二硒化钨WSe2,通过近邻效应在双层石墨烯中引入自旋轨道耦合,BLG-WSe2 异质结构能够显著地促进超导性能,不仅超导转变温度 Tc 可以提升一个数量级,超导电性也不再依赖于面内磁场,并且超导电性在相图中占据了很大的相空间。同时,研究人员还发现 BLG-WSe2 的相图以及超导关于电位移场,有着很强的非对称性。这表明从二硒化钨近邻得到的 Ising 自旋轨道耦合,在超导库珀配对中起着至关重要的作用。该项研究成果,为设计坚固、高度可调和超洁净的石墨烯基超导体奠定了基础。

文章标题:Enhanced superconductivity in spin–orbit proximitized bilayer graphene

 

2.Nature:石墨烯中流体动力学等离激元和能量波观测

2023年2月22日,Nature 报道了研究人员在超净石墨烯中观察到了流体动力学等离子体激元和能量波。流体动力学狄拉克流体可以拥有集体激发。该项研究使用片上太赫兹光谱技术,测量了石墨烯微型带的太赫兹吸收光谱以及接近电荷中性的石墨烯内能量波传播,在超纯净石墨烯中观测到狄拉克流体显著的高频流体动力学双极等离子体共振和较弱的低频能量波共振。该结果为探索石墨烯系统中的流体动力学集体激发开辟新道路。

文章标题:Observation of hydrodynamic plasmons and energy waves in graphene

 

3.Nature:扭角石墨薄膜的混合维莫尔条纹系统

通过堆叠具有相对扭转角的原子薄范德华晶体形成的莫尔图案可以产生显着的新物理性质。到目前为止,对摩尔纹材料的研究仅限于不超过几张范德华片的结构,因为通常认为定位于单个二维界面的摩尔纹图案无法明显改变块状三维晶体的性质。研究人员对双门控器件进行传输测量,该器件是通过在薄块状石墨晶体上轻轻旋转单层石墨烯片来构建的。研究发现摩尔纹电位改变了整个块状石墨薄膜的电子特性。在零磁场和小磁场中,传输由可门可调摩尔纹和石墨表面状态的组合以及不响应门控的共存半金属本体状态介导。在高场下,由于石墨的两个最低朗道带的独特性质,摩尔纹电位与石墨体态杂交。这些朗道带有助于形成单一的准二维混合结构,其中莫尔和块状石墨状态不可分割地混合在一起。研究结果将扭曲石墨烯-石墨确立为新型混合维莫尔材料中的第一种。

文章题目:Mixed-dimensional moiré systems of twisted graphitic thin films

 

4.Nature:可调谐莫尔准晶中的超导性和强相互作用

准晶体电子态的复杂性和稀缺性,相对于周期性和非晶结构,准晶体的研究仍有限。本研究报告一种高度可调谐准晶体,由周期性组件组装而成,通过以两种不同扭转角度扭转的三层石墨烯,形成两种互不相称的莫尔图案。这种“莫尔准晶体”使研究人员能够在低能量的类周期状态和高能量的强准周期状态之间调节化学势,从而调节电子系统。该结果表明通过改变层数和扭转角以及使用不同的二维组件,可扩展到设计准晶体,产生全新的量子材料系列。

文章标题:Superconductivity and strong interactions in a tunable moiré quasicrystal

 

5.Nature:二维晶体中质子通过纳米尺度波纹的快速输运

结构无缺陷石墨烯在室温条件下对所有原子和离子都具有不可渗透性。本研究使用高分辨率扫描电化学电池显微镜,发现尽管机械剥离的石墨烯单层和六方氮化硼单层的质子渗透过程无法归因于任何结构缺陷,但是纳米尺度下二维膜的非平坦性大大促进了质子传输,质子流的空间分布表明存在与纳米波纹和应力积累引起的其他特征强相关的非均质性。该结果强调了纳米级形态学是实现二维晶体质子传输的重要参数。而二维晶体大多被视为平面晶体并被建模为平面晶体,还表明应变和曲率可以作为控制二维材料的质子渗透性的额外自由度。

文章标题:Proton transport through nanoscale corrugations in two-dimensional crystals

 

6.Nature:栅极可调谐的悬浮石墨烯-水界面结构演变

2023年08月30日石墨烯是研究石墨电极界面微观结构和反应动力学的理想平台。复旦大学研究团队制备出厘米级无基底单层石墨烯,具有栅极可调性,且能悬浮在水性电解质表面,并通过频光谱展示了石墨烯-水界面处的结构演变与栅极电压的关系。该成果为石墨电极界面微观过程的观测提供了一个全新平台。

文章标题:Structure evolution at the gate-tunable suspended graphene–water interface

 

7.Nature:五层菱形石墨烯的轨道多铁性

2023年10月18日,Nature发表的文章报道五层菱形石墨烯的轨道多铁性。多铁性指材料中包含两种及两种以上铁的基本性能,这些铁的基本性能包括铁电性(反铁电性),铁磁性(反铁磁性、亚铁磁性)、铁弹性、铁谷性等。石墨烯的独特结构和超薄特性使其成为呈现多铁性的理想材料。在新研究中,研究人员从石墨中分离出了自然排列出菱形图案的五层石墨烯薄片,在略高于绝对零度的超低温条件下发现,石墨烯呈现出两种铁性:一是非常规铁磁性,即电子会协调轨道运动,沿着同一方向自旋;二是铁谷性,即该材料中的电子更偏好于沉降在在两个能量低谷中的其中之一,而非平等地沉降。此外,研究者可以利用电场控制这两种多铁性。研究人员表示,这是首次观察到铁谷性与非常规铁磁性在同一种材料中共存。一种材料具有多铁性特性意味着它可以节省写入磁性硬盘驱动器的能源和时间,与传统设备相比可以存储两倍的信息量。这可以帮助工程师为经典和量子计算机设计超低功耗、高容量的数据存储设备。

文章标题:Orbital multiferroicity in pentalayer rhombohedral graphene

 

8.Science:石墨烯:弹道和粘性流体的静电成像

2023年2月16日,Science报道了科研人员使用扫描隧道电位仪研究了石墨烯中电子流体穿过光滑可调谐的平面内p-n结势垒限定的通道时,在纳米尺度上的流动过程,并观测到随着样本温度和通道宽度的增加,电子流体流经历了Knudsen至Gurzhi转变,从弹性流体变为粘性流体。该结果建立的模型描述了费米子液体流动随着载流子密度、通道宽度和温度的增加而变化的过程。

文章标题:Imaging the breaking of electrostatic dams in graphene for ballistic and viscous fluids

 

9.Science:纳米尺度光的“反常”折射现象

在这项研究中,作者通过设计由半覆盖单层石墨烯的扩展α-MoO3薄膜组成的vdW异质结构,实验证明了中红外光谱区域从正常折射到负折射的转变。基于红外纳米镜的实空间纳米成像揭示了在大范围入射角上观测到的负折射,这依赖于具有可调谐色散曲线的拓扑极化元。作者利用可逆负折射来演示具有凹或凸波面的纳米级聚焦,由于极激元的高度空间限制和所采用的vdW结构的原子厚度,导致深亚波长焦斑的高度压缩尺寸小于相应照明波长的60倍,强度增强超过10倍,负折射透射率为~90%。从正折射到负折射可以通过静电门进行主动调谐,从而能够原位控制极化元的波前,改变聚焦点及其纳米级光学场。

考虑到现有的二维极化激元材料的广泛范围,作者预计极化激元在其他vdW异质结构中的负折射,例如α-V2O5、黑磷和纳米结构超表面(例如,基于同位素纯h-BN)。广泛的现有材料套件可能导致极性负折射覆盖整个中红外和太赫兹区域。强偏振子场约束,对各向异性偏振子传播和聚焦的灵活控制,以及材料叠加和电门控的可调谐性的综合优势,为光学和热应用中的负折射开辟了令人兴奋的途径。

文章标题:Gate-tunable negative refraction of mid-infrared polaritons

 

本文根据网络素材编辑,用于知识分享,如有侵权请联系删除。

回顾:2023年Nature\Science上的锂电池成果

1:固态电解质最新成果 登上Science!

日本东京工业大学创新研究所全固态电池研究中心Ryoji Kanno教授团队利用高熵材料的特性,通过增加已知锂超离子导体的组成复杂性来设计了一种高离子导电的固态电解质,以消除离子迁移的障碍,同时保持超离子导电的结构框架。合成的具有组成复杂性的相显示出改进的离子导电性能。证明了这种高导电固态电解质能够在室温下对厚锂离子电池阴极进行充放电,因此具有改变传统电池配置的潜力。相关成果以“A lithium superionic conductor for millimeter-thick battery electrode”为题发表在Science上。

2:Science:锂空气电池

美国伊利诺伊理工大学(Illinois Institute of Technology)Alireza Kondori,Larry A. Curtiss,Mohammad Asadi等人在Science上发表论文。基于氧化锂(Li2O)形成的锂空气电池理论上可以提供与汽油相当的能量密度。氧化锂的形成涉及四电子反应,这比分别产生超氧化物锂(LiO2)和过氧化锂(Li2O2)的单电子和双电子反应过程更难实现。研究团队通过使用基于嵌入改性聚环氧乙烷聚合物基体中的Li10GeP2S12纳米颗粒的复合聚合物电解质,Li2O是室温固态锂空气电池的主要产品。该电池可在低极化间隙下充电1000次,并可高速率运行。研究成果以A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte为题发表于Science。

3:王春生锂电池成果  再发Nature!!!

美国马里兰大学王春生教授等人(共同通讯作者)在正极测采用不同重量比的Bi和Mg粉体球磨法合成了不同成分的Mg-Bi合金(MgxBi84;x=0、2、8、16、24)。由于Mg16Bi84使Li6PS5Cl在1.9 mA cm2和1.9 mAh cm2下达到最高的临界电流密度(CCD),选择它来研究Li沉积/剥离活化过程中的Mg迁移过程。Mg16Bi84负极夹层的优点包括:LiMgSx SEI的形成保护了Li6PS5Cl免受还原,并将Li6PS5Cl电解质与Li3Bi层紧密接触;同时,Mg向锂负极的迁移将Li3Bi层粘结到锂负极,在高容量容量时在多孔Li3Bi层的孔中沉积,有效地缓解Li沉积/剥离过程中的应力变化,降低了堆积压力;Li3Bi/Li6PS5Cl界面的高电位(约0.7 V)进一步稳定了Li6PS5Cl电解质,加速了Mg的迁移。更加重要的一点是,Li3Bi的高离子/电子电导率确保了Li沉积在Li3Bi/Li界面上,而不是在Li3Bi/Li6PS5Cl界面上。在正极侧,作者使用一种富氟(F)的界面层,其中F阴离子能够在4.3V时从NMC811表面层迁移到NMC811体相中,从而使得表明涂覆转化为F掺杂,最终使得NMC811从表面到体相的材料稳定性得到大幅度提高,即使在2.5 MPa的低堆叠压力下也能实现极其优异的性能。相关研究成果以“Interface design for all-solid-state lithium batteries”为题发表在Nature上。

4:厦门大学最新Nature!!!

厦门大学化学化工学院廖洪钢教授、孙世刚院士团队,与北京化工大学陈建峰院士团队和美国阿贡国家实验室徐桂良、Khalil Amine研究员团队在液体电池内构建了一个Li-S纳米电池,并结合电化学透射电子显微镜(EC-TEM),在醚类电解质内实现了对电极表面LiPSs演变的高分辨率实时观察。研究表明,活性中心将可溶性LiPSs聚集成类似液滴的密集相,并引发了非平衡纳米晶/无定形Li2S的瞬时沉积,而不是传统的逐步转化。密度泛函理论(DFT)计算和分子动力学(MD)模拟指出,聚集诱导的相变是由于活性中心与LiPSs液滴状密集之间的远程静电相互作用和集体电荷转移行为而导致的。

由于高能量密度和低成本,锂-硫(Li-S)电池被认为是先进能源存储系统的有希望的候选者。尽管在抑制锂硫化物长期存在的“穿梭效应”方面付出了巨大努力,但在纳米尺度上理解锂硫化物的界面反应仍然难以捉摸。研究团队使用原位液体电池电化学透射电子显微镜,直接可视化了锂硫化物在电极表面的原子尺度转化。值得注意的是,研究团队捕捉到了锂硫化物在纳米团簇活性中心固定表面上发生的出乎意料的聚集诱导的集体电荷转移。它进一步导致了从浓密的锂硫化物液相瞬间沉积出非平衡的Li2S纳米晶体。在没有活性中心的介入的情况下,反应遵循了经典的单分子途径,锂硫化物逐步转化为Li2S2和Li2S。分子动力学模拟表明,活性中心与锂硫化物之间的远程静电相互作用促进了由Li+和Sn2−(2 < n ≤ 6)组成的密集相的形成,密集相中的集体电荷转移也被从头分子动力学模拟所验证。这种集体界面反应路径揭示了一种新的转化机制,深化了对Li-S电池的基本理解。相关研究成果以“Visualizing interfacial collective reaction behaviour of Li–S batteries”为题,发表在顶级期刊《Nature》上。该论文的第一作者是厦门大学化学化工学院的博士研究生周诗远,以及北京化工大学的施杰博士。

5:UCLA李煜章最新Nature!!!

美国加州大学洛杉矶分校李煜章教授课题组通过在超快沉积电流密度下超过SEI膜的形成速度来解耦这两个相互交织的过程,同时也避免了质量传输的限制。通过使用低温电子显微镜,本工作发现一旦SEI不再影响锂金属的沉积行为,Li金属将不再沉积为的枝晶状,而是形成了完美的菱形十二面体形貌,这与电解质化学或集流体基底无关。本工作提出了一种脉冲电流源协议,通过利用Li菱形十二面体作为成核种子来克服这种失效模式,从而实现了致密Li的后续生长,提高了电池性能。虽然在过去的研究中,锂沉积和SEI膜的形成一直是紧密相连的,但本工作的实验方法为从根本上理解这些相互解耦的过程提供了新的机会,并为设计更好的电池带来了新的见解。相关论文以题为“Ultrafast deposition of faceted lithium polyhedra by outpacing SEI formation”发表在Nature上。

6:固态电池最新Nature!!! 一作已入职宁德时代

英国牛津大学Peter G. Bruce、T. James Marrow、 Charles W. Monroe教授课题组基于对全固态电池枝晶过程的多尺度多手段表征与原位追踪,提出了新的全固态电池枝晶理论,将全固态电池的枝晶短路过程分为引发和扩张两个不同的阶段,并分别建立了理论模型。其中枝晶的引发产生于锂在与Li/SE界面连通的近界面孔洞(缺陷)的沉积,在孔洞填满后将锂挤出的过程中,过大电流密度使得锂作为粘塑流体的流动过程产生极大的内部应力,从而引发电解质碎裂。而锂枝晶的扩张过程是一个锂枝晶在沉积的动态过程中从枝晶裂纹的尾部将固态电解质楔开(wedge open)的过程。枝晶的引发取决于固态电解质晶界的局部断裂强度、孔洞的尺寸、分布密度、及电流密度;而枝晶的扩张过程取决于固态电解质的宏观断裂韧性,枝晶在裂纹中的分布情况,电流密度,以及充电过程的面容量。根据锂金属在枝晶引发阶段与扩张阶段力学环境的差异,引发与扩张阶段对固态电池外部压力的敏感性截然不同。只有较大的压力才会大幅影响枝晶的引发过程,但枝晶的扩张过程却对外部压力非常敏感。降低外部压力可以显著抑制枝晶的扩张阶段,即使在枝晶引发的状态下也可以大幅延后固态电池的短路。研究成果以“Dendrite initiation and propagation in lithium metal solid-state batteries”为题发表于Nature。宁子杨、李冠辰、Dominic Melvin共同一作。

7:STXM研究锂电池非均相反应动力学

美国麻省理工学院Martin Z. Bazant教授等人工作表明表明,可以从碳包覆的磷酸铁锂纳米颗粒的原位扫描透射X射线显微镜(STXM)图像中了解到非均相反应动力学。将STXM图像的大型数据集与热力学一致的电化学相场模型、偏微分方程(PDE)约束优化和不确定性量化相结合,研究团队提取了自由能级图和反应动力学,并验证了它们与理论模型的一致性,还了解了反应速率的空间异质性,这与通过俄歇电子显微镜(AEM)获得的碳涂层厚度分布非常匹配。在180000个图像像素中,与学习模型的平均差异非常小(<7%),与实验噪声相当。研究结果为学习传统实验方法无法达到的非平衡材料性质开辟了可能性,并为表征和优化非均匀反应表面提供了一种新的无损技术。相关研究成果以“Learning heterogeneous reaction kinetics from X-ray videos pixel by pixel”为题发表在Nature上。

8:18650电池也能发Nature!

伦敦大学学院的Shearing教授利用先进的XRD方法对高速运行的锂离子18650电池进行了充电状态、机械应变和温度的表征。他们观察到不同电池类型和电流条件下的内部温度变化,并发现充电协议对温度升高有重要影响。这项研究为解决与温度相关的电池问题提供了设计缓解措施的可能性,从而改善高速电动汽车应用中的热管理。相关成果以 “Mapping internal temperatures during high-rate battery applications” 为题发表在Nature上。

这项创新性研究通过先进的同步辐射X射线衍射方法,创新性地表征了高速运行的锂离子电池的充电状态、机械应变和温度分布,为高速电动汽车应用中的热管理提供了改进的机会。

 

原文链接:回顾:2023年Nature\Science上的锂电池成果

分享:《2023全球石墨烯产业动态》

点击链接阅读:
From:中国石墨烯产业技术创新战略联盟